skip to main content


Search for: All records

Creators/Authors contains: "Rahman, Mohammed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. null (Ed.)
    Reflection absorption infrared spectroscopy and temperature programmed desorption were used to study the adsorption of acrolein, its partial hydrogenation products, propanal and 2-propenol, and its full hydrogenation product, 1-propanol on the Ag(111) surface. Each molecule adsorbs weakly to the surface and desorbs without reaction at temperatures below 220 K. For acrolein, the out-of plane bending modes are more intense than the CO stretch at all coverages, indicating that the molecular plane is mainly parallel to the surface. The two alcohols, 2-propenol and 1-propanol, have notably higher desorption temperatures than acrolein and display strong hydrogen bonding in the multilayers as revealed by a broadened and redshifted O–H stretch. For 1-propanol, annealing the surface to 180 K disrupts the hydrogen-bonding to produce unusally narrow peaks, including one at 1015 cm −1 with a full width at half maximum of 1.1 cm −1 . This suggests that 1-propanol forms a highly orderded monolayer and adsorbs as a single conformer. For 2-propenol, hydrogen bonding in the multilayer correlates with observation of the CC stretch at 1646 cm −1 , which is invisible for the monolayer. This suggests that for monolayer coverages, 2-propenol bonds with the CC bond parallel to the surface. Similarly, the CO stretch of propanal is very weak for low coverages but becomes the largest peak for the multilayer, indicating a change in orientation with coverage. 
    more » « less
  3. null (Ed.)
  4. The adsorption and decomposition of HCN on the Pd(111) and Ru(001) surfaces have been studied with reflection absorption infrared spectroscopy and density functional theory calculations. The results are compared to earlier studies of HCN adsorption on the Pt(111) and Cu(100) surfaces. In all cases the initial adsorption at low temperatures gives rise to a ν (C–H) stretch peak at ∼3300 cm −1 , which is very close to the gas phase value indicating that the triple CN bond is retained for the adsorbed molecule. When the Pd(111) surface is heated to room temperature, the HCN is converted to the aminocarbyne species, CNH 2 , which was also observed on the Pt(111) surface. DFT calculations confirm the high stability of CNH 2 on Pd(111), and suggest a bi-molecular mechanism for its formation. When HCN on Cu(100) is heated, it desorbs without reaction. In contrast, no stable intermediates are detected on Ru(001) as the surface is heated, indicating that HCN decomposes completely to atomic species. 
    more » « less